p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.54C22, C24.381C23, C23.568C24, C22.3422+ (1+4), (C2×D4)⋊11D4, C2.32(D42), C23.56(C2×D4), C24⋊3C4⋊21C2, C23⋊2D4⋊31C2, (C23×C4)⋊23C22, C2.81(D4⋊5D4), (C22×D4)⋊10C22, C23.4Q8⋊38C2, C23.165(C4○D4), C23.11D4⋊73C2, C23.23D4⋊75C2, C23.10D4⋊68C2, C2.35(C23⋊3D4), (C22×C4).173C23, C22.377(C22×D4), C2.C42⋊32C22, C2.6(C22.54C24), C2.56(C22.32C24), (C2×C4⋊D4)⋊27C2, (C2×C4⋊C4)⋊28C22, (C2×C4).409(C2×D4), (C2×C22≀C2)⋊11C2, (C2×C22⋊C4)⋊25C22, C22.435(C2×C4○D4), SmallGroup(128,1400)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 996 in 408 conjugacy classes, 104 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C2 [×10], C4 [×12], C22 [×3], C22 [×4], C22 [×66], C2×C4 [×4], C2×C4 [×36], D4 [×28], C23, C23 [×10], C23 [×58], C22⋊C4 [×26], C4⋊C4 [×5], C22×C4 [×2], C22×C4 [×8], C22×C4 [×8], C2×D4 [×8], C2×D4 [×29], C24, C24 [×4], C24 [×10], C2.C42 [×2], C2.C42 [×4], C2×C22⋊C4 [×2], C2×C22⋊C4 [×14], C2×C4⋊C4, C2×C4⋊C4 [×2], C22≀C2 [×8], C4⋊D4 [×8], C23×C4 [×2], C22×D4, C22×D4 [×6], C25, C24⋊3C4, C23.23D4 [×4], C23⋊2D4, C23.10D4 [×2], C23.11D4 [×2], C23.4Q8, C2×C22≀C2 [×2], C2×C4⋊D4 [×2], C23.568C24
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C22×D4 [×2], C2×C4○D4, 2+ (1+4) [×4], C23⋊3D4 [×2], C22.32C24, D42, D4⋊5D4 [×2], C22.54C24, C23.568C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 28)(2 27)(3 23)(4 24)(5 11)(6 12)(7 16)(8 15)(9 17)(10 18)(13 19)(14 20)(21 31)(22 32)(25 29)(26 30)
(1 5)(2 6)(3 29)(4 30)(7 10)(8 9)(11 28)(12 27)(13 32)(14 31)(15 17)(16 18)(19 22)(20 21)(23 25)(24 26)
(1 18)(2 17)(3 19)(4 20)(5 16)(6 15)(7 11)(8 12)(9 27)(10 28)(13 23)(14 24)(21 30)(22 29)(25 32)(26 31)
(1 21)(2 22)(3 16)(4 15)(5 20)(6 19)(7 23)(8 24)(9 26)(10 25)(11 14)(12 13)(17 30)(18 29)(27 32)(28 31)
(3 25)(4 26)(7 16)(8 15)(9 17)(10 18)(13 32)(14 31)(19 22)(20 21)(23 29)(24 30)
(1 11)(2 12)(3 29)(4 30)(5 28)(6 27)(7 9)(8 10)(13 21)(14 22)(15 18)(16 17)(19 31)(20 32)(23 25)(24 26)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,28)(2,27)(3,23)(4,24)(5,11)(6,12)(7,16)(8,15)(9,17)(10,18)(13,19)(14,20)(21,31)(22,32)(25,29)(26,30), (1,5)(2,6)(3,29)(4,30)(7,10)(8,9)(11,28)(12,27)(13,32)(14,31)(15,17)(16,18)(19,22)(20,21)(23,25)(24,26), (1,18)(2,17)(3,19)(4,20)(5,16)(6,15)(7,11)(8,12)(9,27)(10,28)(13,23)(14,24)(21,30)(22,29)(25,32)(26,31), (1,21)(2,22)(3,16)(4,15)(5,20)(6,19)(7,23)(8,24)(9,26)(10,25)(11,14)(12,13)(17,30)(18,29)(27,32)(28,31), (3,25)(4,26)(7,16)(8,15)(9,17)(10,18)(13,32)(14,31)(19,22)(20,21)(23,29)(24,30), (1,11)(2,12)(3,29)(4,30)(5,28)(6,27)(7,9)(8,10)(13,21)(14,22)(15,18)(16,17)(19,31)(20,32)(23,25)(24,26)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,28)(2,27)(3,23)(4,24)(5,11)(6,12)(7,16)(8,15)(9,17)(10,18)(13,19)(14,20)(21,31)(22,32)(25,29)(26,30), (1,5)(2,6)(3,29)(4,30)(7,10)(8,9)(11,28)(12,27)(13,32)(14,31)(15,17)(16,18)(19,22)(20,21)(23,25)(24,26), (1,18)(2,17)(3,19)(4,20)(5,16)(6,15)(7,11)(8,12)(9,27)(10,28)(13,23)(14,24)(21,30)(22,29)(25,32)(26,31), (1,21)(2,22)(3,16)(4,15)(5,20)(6,19)(7,23)(8,24)(9,26)(10,25)(11,14)(12,13)(17,30)(18,29)(27,32)(28,31), (3,25)(4,26)(7,16)(8,15)(9,17)(10,18)(13,32)(14,31)(19,22)(20,21)(23,29)(24,30), (1,11)(2,12)(3,29)(4,30)(5,28)(6,27)(7,9)(8,10)(13,21)(14,22)(15,18)(16,17)(19,31)(20,32)(23,25)(24,26) );
G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,28),(2,27),(3,23),(4,24),(5,11),(6,12),(7,16),(8,15),(9,17),(10,18),(13,19),(14,20),(21,31),(22,32),(25,29),(26,30)], [(1,5),(2,6),(3,29),(4,30),(7,10),(8,9),(11,28),(12,27),(13,32),(14,31),(15,17),(16,18),(19,22),(20,21),(23,25),(24,26)], [(1,18),(2,17),(3,19),(4,20),(5,16),(6,15),(7,11),(8,12),(9,27),(10,28),(13,23),(14,24),(21,30),(22,29),(25,32),(26,31)], [(1,21),(2,22),(3,16),(4,15),(5,20),(6,19),(7,23),(8,24),(9,26),(10,25),(11,14),(12,13),(17,30),(18,29),(27,32),(28,31)], [(3,25),(4,26),(7,16),(8,15),(9,17),(10,18),(13,32),(14,31),(19,22),(20,21),(23,29),(24,30)], [(1,11),(2,12),(3,29),(4,30),(5,28),(6,27),(7,9),(8,10),(13,21),(14,22),(15,18),(16,17),(19,31),(20,32),(23,25),(24,26)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2Q | 4A | ··· | 4H | 4I | ··· | 4N |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ (1+4) |
kernel | C23.568C24 | C24⋊3C4 | C23.23D4 | C23⋊2D4 | C23.10D4 | C23.11D4 | C23.4Q8 | C2×C22≀C2 | C2×C4⋊D4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 2 | 2 | 8 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2^3._{568}C_2^4
% in TeX
G:=Group("C2^3.568C2^4");
// GroupNames label
G:=SmallGroup(128,1400);
// by ID
G=gap.SmallGroup(128,1400);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations